Metabolismo urbano, cuando las ciudades se integran en el entorno natural

Metabolismo urbano, cuando las ciudades se integran en el entorno natural

My list

Autor | Diana PardoEl concepto de metabolismo no es algo exclusivo a los seres vivos, y de hecho, ya en el año 1965 Wolman habló de su acepción puramente urbana como la “Conceptualización Ecológica de las ciudades”.Lo que nos quiere transmitir esta idea es un cambio de paradigma a la hora de entender la creación y desarrollo de las urbes. Su propuesta indica que debemos visualizar a las ciudades como seres vivos que crecen se desarrollan y, en algún momento, pueden perecer.Desde esta perspectiva, las ciudades como sistemas artificiales, pueden ser diseñadas desde una perspectiva que favorezca un ecosistema urbano sostenible. Para ello es necesario cambiar el prisma y analizar la forma en la que funcionan las urbes basándonos en principios y métodos ecológicos. Al comparar una ciudad con un organismo vivo, todos sus flujos de energía y materiales deben de ser considerados.

Metabolismo urbano circular versus Metabolismo urbano lineal

En la naturaleza, los seres vivos demandamos recursos como alimentos, agua y energía para poder sobrevivir, pues con las ciudades debería de ocurrir lo mismo. De hecho una gran parte de recursos naturales se destinan al abastecimiento de las urbes. El metabolismo urbano proporciona un sistema integral que tiene en cuenta todas las entradas (importaciones) y salidas (exportaciones) respecto al medio biofísico en el que se ubica.¿Cuál es entonces la principal diferencia entre ambos enfoques?

Metabolismo Circular

En la naturaleza, los seres vivos gestionamos nuestros recursos mediante un metabolismo circular, esto quiere decir que los recursos que utiliza nuestro cuerpo como la luz solar, el agua, los nutrientes, etcétera, serán transformados mediante una serie de reacciones químicas en calor, energía, y otras sustancias útiles para nuestra supervivencia.Los residuos que se generen no serán vistos como tal ya que aquellas partículas que no sean necesarias volverán al circuito cumpliendo otra función en el ecosistema.

Metabolismo Lineal

En contra de este método se encuentra el metabolismo lineal que siguen la mayoría de las ciudades, en las que se utilizan materias primas para fabricar productos y ponerlos al consumo y servicio de los que allí viven. Una vez cumplida su función, se desechan para no ser reutilizados provocando así el agotamiento de los recursos naturales o una gran dependencia sobre recursos no renovables.Pensemos que la mayor parte de contaminación que se genera en las ciudades y la agricultura se presenta en forma de emisiones y vertidos al medio ambiente.

Metabolismo Circular, principal apuesta para las Smart Cities

La filosofía de una ciudad inteligente, sostenible y respetuosa con sus habitantes y el medio ambiente apuesta por integrar en las urbes, un metabolismo circular.

El claro ejemplo del agua

Cuando el agua llega a una ciudad, lo hace ya habiendo sido potabilizada. Posteriormente se transporta y se distribuye por la urbe para consumo doméstico, fines industriales, etc.Una vez el agua potable es utilizada, su calidad disminuye convirtiéndose en agua residual y abandonando el sistema urbano para siempre.El objetivo de un metabolismo circular es tratar las salidas de recursos como nuevas entradas de tal forma que esta agua residual se consideraría un recurso en lugar de un inconveniente.Las aguas residuales son una fantástica fuente llena de nutrientes para ser utilizada como agua de riego en la agricultura. Para ello se emplearán diferentes sistemas tecnológicos que recuperarán dichos elementos y los prepararán para su posterior uso en otras actividades.De esta forma las tierras de cultivo que alimentan a la ciudad, cierran el ciclo del agua en un metabolismo circular.Las ciudades del futuro, que mayoritariamente no dejan de ser las de hoy, se deben diseñar con la misión de mejorar el día a día de sus habitantes, sin olvidar la transición hacia un modelo más sostenible. La adopción de un sistema de medidas que imite el comportamiento de un organismo vivo será la clave para conseguirlo.Imágenes | Katerina Kerdi, Carlos Delgado, danielkirsch

Related content

Recommended profiles for you

ES
Eva Solé
Giny
SN
Sinéad Nicholson
University of Kent
Early stage researcher
RH
Raymond Hernandez
Alpha Cleantec AG
Senior Business Development Manager
AC
Andrea Castellar
DISCOMON
JA
Jorge Aponte Gomez
JAG
Director
WZ
Wolfgang Zimmermann
Stadt Luzern
Senior Business Project Manager
LN
LAWRENCE NEUMAN
Solar Bridge LLC
BP
Bhargav Mahesh Potti
FlexiMC Solutions Private Limited
FlexiMC Solutions Private Limited - Data Analyst
TM
Tudorancea Mihai
TUD Investment Consulting
CEO
AS
Alicia Santiago
PIDC, Navy Yard
JD
JOAO MARCIO DE MATTOS
Sole Green Tecnology
Diretor Presidente
SC
Sean Compton
Compton Creative Solutions, LLC
TF
TERESINHA FREIRE
controle & instrumentação
select and develop topics related to energy, technology, telecom, automation, business and industry
DP
Donovan Robertson Prof.
CCSI Group
YC
YenChung Chen
KTH ( Royal Institute of Technology )
A master student in KTH, EIT SENSE program, studying smart grid economy and the implementation.
MZ
Mohammad Zeyad
University of the Basque Country (UPV/EHU)
Graduate Student
HM
Henrik Morgen
BABLE Smart Cities
Nordic-Baltic Lead
MR
mj roux
City of Montreal
SM
Sinelle Marion
Bleu marine
Commercial in import export
MH
Mustapha Hatti
Tipasa Smart City Ass.