Facial recognition and combating crime: why biases can lead to a justice system full of prejudices
This article is also available here in Spanish.

Facial recognition and combating crime: why biases can lead to a justice system full of prejudices

My list

Author | Arantxa HerranzAn increasing number of cities are turning to facial recognition systems as a measure to combat crimeMoscow is one of the most recent, but before reaching the Russian capital, they could be found in cities such as Chicago or countries such as China. A measure that has had its fair share of controversy, since defenders of civic freedoms and privacy fear that technology will become a massive surveillance and, more importantly, a discriminatory weapon. Europe, in fact, is considering prohibiting the use of facial recognition systems in public spaces for five years, until measures are put in place designed, precisely, to prevent possible abuses.The problem is not so much whether this is an imperfect system (in china, for example, there is a certain degree of controversy since it was noted that at the entrance to buildings with facial recognition, people wearing masks to prevent the spread of the coronavirus are being denied access); part of the controversy is that facial recognition has significant racial, sexual and age biases.

Middle aged white men, the most recognisable

Researchers at the National Institute of Standards and Technology discovered that the facial recognition algorithms are much better with people described as white than with Afro-American or Asian people. So much so, that the errors in the identification of these people are 10 to 100 times more likely of failing than with Caucasian faces.In a database of photos used by police agencies in the United States, the highest error rates came in identifying Native Americans, according to the study. Furthermore, the algorithms had more difficulties in identifying women than men.To conduct this study, the agency tested around 200 facial recognition algorithms of around 100 developers, using four collections of photographs with over 18 million images of more than 8 million people.Facial recognition

Biases are maximised in artificial intelligence

The problem of biases is not new. And it is not the only one in artificial intelligence. But the main problem is that algorithms may, when badly programmed, maximise and increase these biases that affect people’s race, age, condition and sexual orientation or religion.And it not does not just affect facial recognition: a recent study also demonstrated that an algorithm widely used in hospitals in the US to assign medical care to patients has been systematically discriminating against black people.In many cases, AI can reduce the subjective interpretation of human data, since algorithms learn to only consider variables that improve their predictive accuracy, based on the training data used. Furthermore, there is significant evidence to suggest that AI models can embed human and social biases and deploy them at scale.Therefore, both humans and machines should strive to avoid biases and, with them, discrimination. Biases in AI occur mainly in data or algorithmic models, therefore the industry is looking to develop AI systems that we can trust. These systems therefore need to be trained with impartial data, developing algorithms that can be easily explained for possible analysis when false positives are identified.Images | Fauxels, teguhjatipras

Related content

Recommended profiles for you

RC
René Calis
Eagle Eye Networks
www.een.com
RS
Rudy Salazar
Intelltech Group
CEO
DS
DEEPTHI SUBASH
G4S
SENIOR PRESALES ENGINEER
AG
Antonio Gómez
Neoico MGA
I amb desig solucions
RI
Rafael Ibañez de Elejalde
Axis Communications
Key Account Manager
GF
GONZALO EDUARDO FLOREZ FUENTES
UNIVERSIDAD CATÓLICA DE SANTA MARIA
TE
Tiffany Edwards
Industrious Content
Content creator and publisher, including social media growth and engagement
YZ
Yulia Zharinova
RTI
Manager
PR
Patrick Riota
Campo Verde
CSR
ID
Israel Dadon
Intelligent smart ideas
Ceo
IE
Igor Egorichev
AV Soft
Senior manager
MG
Mario Guvo
Eupolis Group
Business Intelligence Analyst
RN
Rumy Narayan
University of Vaasa
MS
Marcelo Szeer
Vianet telecomunicações e Internet
Ceo
MP
Mohanraj Pathirappan
Alpha Data LLC
Pre Sales Design Engineer
YB
Yves Boussin
Telespazio
Head of Navigation
HM
Hugo Menegozzi
Exanet S.A.
CEO
MG
Martel Gilles
Keolis Canada
Director
CL
CARLOS ENRIQUE LOPEZ GRIPPA
GENERALITAT CATALONIA
PR
Pavel Rozsypal
Center of City of the Future CIIRC CTU
Ambassador