Seismic reinforcement: how it works and why it is so important
This article is also available here in Spanish.

Seismic reinforcement: how it works and why it is so important

My list

Author | Jaime Ramos

The Earth, as rocky planet that it is, is alive beneath our feet. Although the geological activity cannot be felt, sometimes it manifests in an abrupt and dangerous fashion. Earthquakes and seismic events are responsible for transmitting those tectonic beats and have forced humans to be prepared.

Depending on the particular magnitude of the earthquakes, according to the Richter scale, each year there are between one and two dozen earthquakes exceeding a magnitude of eight, up to more than 2,000.

How can buildings be adapted and reinforced to withstand earthquakes

The risk increases in more vulnerable areas or geological points. Earthquakes pose a threat because many regions have high density populations. Cities such as Manila, Jakarta, Los Angeles, San Francisco, Lima, Tehran, Istanbul (https://tomorrow.city/a/success-story-urban-regeneration-in-the-municipality-of-gaziosmanpasa-after-the-earthquake-in-1999) or Tokyo have significant seismic activity, although this is not always felt on the ground in these areas.

The Japanese capital, for example, is located in an area in which 80% of the planet’s largest earthquakes occur. The University of Tokyo estimates that the city has a 98% chance of suffering a major earthquake within the next 30 years.

seismic retrofitting 129

These are the main areas in which earthquake engineering has been developed as an essential instrument of urban protection through architecture. In recent decades, a methodology known as Performance Based Earthquake Engineering has been developed to identify the response of anti-seismic technologies.

What is seismic reinforcement

Seismic retrofitting is an application of earthquake engineering that modifies internal and external structures of buildings using specific methods. The aim is to develop an architecture that offers greater resistance in the event of geological disasters.

Anti-seismic reinforcement methods

To achieve this, there are numerous methods at a global level. They tend to be based on three protection functionalities: through dissipation, resistance and through deformation or ductility.

Energy dissipation

Anti-seismic reinforcement methods through dissipation, are designed to channel or absorb an earthquake’s energy to prevent it from impacting the health of the building and from being offloaded in the form of heat or movement. They tend to be effective for what is known as seismic resonance that lingers after the initial moments of an earthquake.

seismic retrofitting 130

A derivative and global reference of this method can be found in the Taipei 101 skyscraper in Taiwan. A 728-ton golden sphere works as a TMD (tuned mass damper), maintaining the equilibrium of the 508-meter building in the event of potential seismic events.

Seismic resistance

These are structures that increase resistance to the impact of an earthquake. Among the different methods are external post-tensioned metal straps that use precast concrete or the more conspicuous retrofitting on the building itself, in the form or massive columns or structures.

This method is normally used on historical or older buildings that do not allow major internal refurbishments. The Rostrevor House in Wellington, New Zealand uses this method to alleviate the effect of the 30,000 earthquakes of all magnitudes that the country experiences in each year.

Ductility to withstand earthquakes

Ductility control methods recognize that an earthquake will damage a building. The angular stone directs the energy towards structural elements that can absorb that energy and deform without affecting the rest of the building or run the risk of collapsing.

The 73 floors of the Wilshire Grand Center building in Los Angeles (United States) protect the building’s equilibrium thanks to shape memory alloys (SMA). In the event of an earthquake, they absorb part of the energy and deform, to then return to their prior state.

The development of these methods, enable the harmful effects of disasters to be mitigated in cities. They form an essential part of the new urban design that all smart cities should incorporate in order to guarantee the safety of the new urban landscape.

Images | iStock/Skarie20, iStock/TokioMarineLife, Someformofhuman

Related content

Recommended profiles for you

VS
Vitor Silva
Cycloid
Business Development
MV
Milos Vranek
CGF
IG
Ishantt Garg
THDC-IHET
Student
RS
Rafael Silverio
IE University
VP
VB
Vijaya Krishna Boddu
Justacontract
I'm the CEO and founder of JUSTACONTRACT.COM, with 20 years exp in contract & legal management.
GG
Gregory Gordon
Gordon
Advisor
BN
benny su pei ng
Sabah Housing and Real Estate Developer Association
CEO
CJ
Chad Julian
University of Hawaii Maui College
MX
Maria Xalabarder
Diputació de Barcelona
Gerent
JR
Julio Rojas
Xendra
Professor at the School of Architecture and Urbanism of the National University of Colombia
LT
Leandro Teodoro Andrade
Biazzo Simon Advogados
Full Advisory Lawyer / Biazzo Simon Advogados
JS
Juan Sierra
Logit
Cio, Cto
GA
Ghazi Abboud
IE Business School
Manager
RD
Rada Daleva
Light Up
CC
Catherine Castellares
IGeS IT
Eriselda Çobo
Albanian Prime Minister's Office
National Coordinator of Strategic Projects
PM
Paul Marais
Kyanite360 Ltd
CEO
CM
Christian Maetz
AT&T Global Business Solutions
Business Development IoT EMEA
EF
Emily Feavel
Siemens
Head of Program Management, Siemens Expo 2020 Dubai Premier Partnership
TG
TEXIER GAETAN
ENGIE
International Business Development